在本文中,我们提出了一个新的领域概括(DG)框架,基于与看不见领域的风险的新上限。尤其是,我们的框架建议共同最大程度地减少可见域之间的协变量转移以及概念转移,从而在看不见的域上表现更好。虽然可以通过协变量和概念对准模块的任意组合来实施所提出的方法,但在这项工作中,我们使用良好的方法来分配一致性,即最大平均差异(MMD)和协方差比对(珊瑚)和使用,并使用不变的风险最小化(IRM)基于概念对齐的方法。我们的数值结果表明,所提出的方法在几个数据集上的域概括性要比最先进的方法执行或更好。
translated by 谷歌翻译
我们提出了Rapid-Learn:学习再次恢复和计划,即一种混合计划和学习方法,以解决适应代理环境中突然和意外变化(即新颖性)的问题。 Rapid-Learn旨在实时制定和求解任务的Markov决策过程(MDPS),并能够利用域知识来学习由环境变化引起的任何新动态。它能够利用域知识来学习行动执行者,这可以进一步用于解决执行智能,从而成功执行了计划。这种新颖信息反映在其更新的域模型中。我们通过在受到Minecraft启发的环境环境中引入各种新颖性来证明其功效,并将我们的算法与文献中的转移学习基线进行比较。我们的方法是(1)即使在存在多个新颖性的情况下,(2)比转移学习RL基准的样本有效,以及(3)与不完整的模型信息相比,与纯净的符号计划方法相反。
translated by 谷歌翻译
为了使人工代理在不断变化的环境中执行有用的任务,它们必须能够检测并适应新颖性。但是,视觉新颖性检测研究通常仅在重新利用的数据集(例如最初用于对象分类的CIFAR-10)上进行评估。这种做法将新颖性限制在不同对象类型的刻板图像上。我们建议需要新的基准来代表开放世界的挑战。我们的新型NovelCraft数据集包含图像和符号世界的多模式情节数据,该数据由代理在视频游戏世界中完成POGO-Stick组装任务。在某些情节中,我们插入可能影响游戏玩法的新颖对象。新颖性在复杂场景中的大小,位置和遮挡可能会有所不同。我们基于最新的新颖性检测和广义类别发现模型,重点是全面评估。结果暗示了未来研究的机会:了解不同类型错误的特定任务成本的模型可以更有效地检测和适应开放世界中的新颖性。
translated by 谷歌翻译
基于不变性的方法,例如不变风险最小化(IRM),最近已成为有前途的域泛化方法(DG)。尽管有希望的理论,但由于真正不变特征和虚假不变特征的混合,这种方法在共同的分类任务中失败。为了解决这个问题,我们提出了一个基于条件熵最小化(CEM)原理的框架,以滤除带有具有更好概括能力的新算法的虚假不变特征。我们表明,我们提出的方法与众所周知的信息瓶颈(IB)框架密切相关,并证明在某些假设下,熵最小化可以准确恢复真正的不变特征。与最近在几个DG数据集中的最新原理替代方案相比,我们的方法提供了竞争性的分类精度。
translated by 谷歌翻译
With the advent of Neural Style Transfer (NST), stylizing an image has become quite popular. A convenient way for extending stylization techniques to videos is by applying them on a per-frame basis. However, such per-frame application usually lacks temporal-consistency expressed by undesirable flickering artifacts. Most of the existing approaches for enforcing temporal-consistency suffers from one or more of the following drawbacks. They (1) are only suitable for a limited range of stylization techniques, (2) can only be applied in an offline fashion requiring the complete video as input, (3) cannot provide consistency for the task of stylization, or (4) do not provide interactive consistency-control. Note that existing consistent video-filtering approaches aim to completely remove flickering artifacts and thus do not respect any specific consistency-control aspect. For stylization tasks, however, consistency-control is an essential requirement where a certain amount of flickering can add to the artistic look and feel. Moreover, making this control interactive is paramount from a usability perspective. To achieve the above requirements, we propose an approach that can stylize video streams while providing interactive consistency-control. Apart from stylization, our approach also supports various other image processing filters. For achieving interactive performance, we develop a lite optical-flow network that operates at 80 Frames per second (FPS) on desktop systems with sufficient accuracy. We show that the final consistent video-output using our flow network is comparable to that being obtained using state-of-the-art optical-flow network. Further, we employ an adaptive combination of local and global consistent features and enable interactive selection between the two. By objective and subjective evaluation, we show that our method is superior to state-of-the-art approaches.
translated by 谷歌翻译
Vision transformers have emerged as powerful tools for many computer vision tasks. It has been shown that their features and class tokens can be used for salient object segmentation. However, the properties of segmentation transformers remain largely unstudied. In this work we conduct an in-depth study of the spatial attentions of different backbone layers of semantic segmentation transformers and uncover interesting properties. The spatial attentions of a patch intersecting with an object tend to concentrate within the object, whereas the attentions of larger, more uniform image areas rather follow a diffusive behavior. In other words, vision transformers trained to segment a fixed set of object classes generalize to objects well beyond this set. We exploit this by extracting heatmaps that can be used to segment unknown objects within diverse backgrounds, such as obstacles in traffic scenes. Our method is training-free and its computational overhead negligible. We use off-the-shelf transformers trained for street-scene segmentation to process other scene types.
translated by 谷歌翻译
The problem of generating an optimal coalition structure for a given coalition game of rational agents is to find a partition that maximizes their social welfare and is known to be NP-hard. This paper proposes GCS-Q, a novel quantum-supported solution for Induced Subgraph Games (ISGs) in coalition structure generation. GCS-Q starts by considering the grand coalition as initial coalition structure and proceeds by iteratively splitting the coalitions into two nonempty subsets to obtain a coalition structure with a higher coalition value. In particular, given an $n$-agent ISG, the GCS-Q solves the optimal split problem $\mathcal{O} (n)$ times using a quantum annealing device, exploring $\mathcal{O}(2^n)$ partitions at each step. We show that GCS-Q outperforms the currently best classical solvers with its runtime in the order of $n^2$ and an expected worst-case approximation ratio of $93\%$ on standard benchmark datasets.
translated by 谷歌翻译
Cartesian impedance control is a type of motion control strategy for robots that improves safety in partially unknown environments by achieving a compliant behavior of the robot with respect to its external forces. This compliant robot behavior has the added benefit of allowing physical human guidance of the robot. In this paper, we propose a C++ implementation of compliance control valid for any torque-commanded robotic manipulator. The proposed controller implements Cartesian impedance control to track a desired end-effector pose. Additionally, joint impedance is projected in the nullspace of the Cartesian robot motion to track a desired robot joint configuration without perturbing the Cartesian motion of the robot. The proposed implementation also allows the robot to apply desired forces and torques to its environment. Several safety features such as filtering, rate limiting, and saturation are included in the proposed implementation. The core functionalities are in a re-usable base library and a Robot Operating System (ROS) ros_control integration is provided on top of that. The implementation was tested with the KUKA LBR iiwa robot and the Franka Emika Robot (Panda) both in simulation and with the physical robots.
translated by 谷歌翻译
Active learning as a paradigm in deep learning is especially important in applications involving intricate perception tasks such as object detection where labels are difficult and expensive to acquire. Development of active learning methods in such fields is highly computationally expensive and time consuming which obstructs the progression of research and leads to a lack of comparability between methods. In this work, we propose and investigate a sandbox setup for rapid development and transparent evaluation of active learning in deep object detection. Our experiments with commonly used configurations of datasets and detection architectures found in the literature show that results obtained in our sandbox environment are representative of results on standard configurations. The total compute time to obtain results and assess the learning behavior can thereby be reduced by factors of up to 14 when comparing with Pascal VOC and up to 32 when comparing with BDD100k. This allows for testing and evaluating data acquisition and labeling strategies in under half a day and contributes to the transparency and development speed in the field of active learning for object detection.
translated by 谷歌翻译
Using robots in educational contexts has already shown to be beneficial for a student's learning and social behaviour. For levitating them to the next level of providing more effective and human-like tutoring, the ability to adapt to the user and to express proactivity is fundamental. By acting proactively, intelligent robotic tutors anticipate possible situations where problems for the student may arise and act in advance for preventing negative outcomes. Still, the decisions of when and how to behave proactively are open questions. Therefore, this paper deals with the investigation of how the student's cognitive-affective states can be used by a robotic tutor for triggering proactive tutoring dialogue. In doing so, it is aimed to improve the learning experience. For this reason, a concept learning task scenario was observed where a robotic assistant proactively helped when negative user states were detected. In a learning task, the user's states of frustration and confusion were deemed to have negative effects on the outcome of the task and were used to trigger proactive behaviour. In an empirical user study with 40 undergraduate and doctoral students, we studied whether the initiation of proactive behaviour after the detection of signs of confusion and frustration improves the student's concentration and trust in the agent. Additionally, we investigated which level of proactive dialogue is useful for promoting the student's concentration and trust. The results show that high proactive behaviour harms trust, especially when triggered during negative cognitive-affective states but contributes to keeping the student focused on the task when triggered in these states. Based on our study results, we further discuss future steps for improving the proactive assistance of robotic tutoring systems.
translated by 谷歌翻译